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ABSTRACT
Applications of high-dimensional regression often involve multiple sources or types of covariates. We
propose methodology for this setting, emphasizing the “wide data” regime with large total dimensionality
p and sample size n � p. We focus on a flexible ridge-type prior with shrinkage levels that are specific to
each data type or source and that are set automatically by empirical Bayes. All estimation, including setting
of shrinkage levels, is formulated mainly in terms of inner product matrices of size n × n. This renders
computation efficient in the wide data regime and allows scaling to problems with millions of features.
Furthermore, the proposed procedures are free of user-set tuning parameters. We show how sparsity can
be achieved by post-processing of the Bayesian output via constrained minimization of a certain Kullback–
Leibler divergence. This yields sparse solutions with adaptive, source-specific shrinkage, including a closed-
form variant that scales to very large p. We present empirical results from a simulation study based on
real data and a case study in Alzheimer’s disease involving millions of features and multiple data sources.
Supplementary materials for this article are available online.
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1. Introduction

Advances in data acquisition have meant that studies in many
fields now routinely include multiple sources of features, such
as different data types, with one or more of the sources being
high-dimensional. To fix ideas, consider a biomedical setting in
which samples indexed by i=1, . . . , n each have response yi and
features of several types k = 1, . . . , K (representing say genetic
data, imaging, clinical covariates, and so on) with respective
dimensionalities p1, . . . , pK . We refer to the different types of
feature as sources. The pk’s are the source-specific dimensional-
ities and p=∑K

k=1 pk is the total dimensionality. We consider a
specific example of this kind below, in the context of Alzheimer’s
disease (AD).

Constructing regression models using such data is challeng-
ing, because the relevance of the sources may be quite unequal
(and unknown in advance) and the total dimension p may be
large. This motivates a need for methodology that can cope with
multiple sources and that scales to high dimensions.

Methods for high-dimensional regression are now well estab-
lished and include regularized least-squares approaches such
as the lasso and extensions (Tibshirani 1996; Tibshirani et al.
2005; Yuan and Lin 2006), elastic net (Zou and Hastie 2005),
SCAD (Fan and Li 2001), and Bayesian analogues (see Kyung
et al. 2010, for a review). A range of Bayesian approaches have
been proposed, notably those based on shrinkage priors, often
coupled with variable selection (see, e.g., Yuan and Lin 2005;
Park and Casella 2008; Hans 2010; Griffin and Brown 2010;
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Carvalho, Polson, and Scott 2010; Armagan, Dunson, and Lee
2013, among others). However, in the very large p case many
available methods become computationally cumbersome or
intractable and effective source-specific shrinkage remains hard
to achieve.

In this article, we put forward an approach to regression in
the multiple-source, high-dimensional setting. Specifically:

• We consider a generalized ridge-type prior with shrinkage
that adjusts to individual data sources, with the correspond-
ing shrinkage levels estimated from the data.

• We show that estimation (including setting of tuning param-
eters) can be formulated in a way that renders computation
efficient for “wide” data, even for very large p and over
multiple sources.

• We introduce sparsifications that achieve competitive pre-
diction performance and that provide a fast yet multivariate
technique for discarding non-influential features.

Thus, we consider the case of data from multiple sources with
source-specific dimensionalities pk that could differ by many
orders of magnitude, with total p large and a priori unknown
source-specific importance. The main strength of our methods
is their ability to use source-specific shrinkage to automatically
adapt to signals spread across multiple sources.

There has been much interesting work on group selection
approaches in regression (reviewed in Huang, Breheny, and Ma
2012). The group lasso (Yuan and Lin 2006) allows specification
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of covariate subsets that can then be selected as groups; however,
applying the group lasso in the current setting (by identify-
ing groups with sources) would not be useful because sources
would then simply be either included or excluded (without
within-source regularization). The sparse group lasso (Simon
et al. 2013) permits additional regularization via within-group
sparsity but its use here would require a nontrivial extension
to source-specific penalties whose tuning would be difficult if
not intractable in the very high-dimensional, multiple source
setting. Dondelinger, Mukherjee, et al. (2019) consider the case
of penalized regression over multiple subgroups of samples; this
is quite different from the present setting of sources of covariates
(i.e., we focus on the columns, not the rows), also the authors do
not tackle the very high-dimensional case.

Ridge-type estimators are among the oldest and best studied
regularized regression tools, whether from a penalized likeli-
hood or Bayesian viewpoint. Our results build on these classi-
cal tools, developing a variant of the ridge prior to deal with
multiple-source, high-dimensional problems. The subsequent
sparsification step that we consider is an example of an emerging
class of posterior post-processing methods and yields a solution
which is similar to the penalized credible region (pCR, Bondell
and Reich 2012) and the decoupled shrinkage selection (DSS,
Hahn and Carvalho 2015) solutions. In contrast to pCR and DSS
we develop our approach via a certain Kullback–Leibler (KL)
divergence. Interestingly, we can recover the pCR solution as
a special case. Our approach can take advantage of the infor-
mation from the initial ridge step and thus allows parameter-
specific as well as source-specific penalization. In addition, we
propose a relaxed variant which leads to a closed-form solu-
tion that is immediately applicable to problems involving mil-
lions of predictors. The primary motivation for this work is
the need for efficient and interpretable predictive models in
high-dimensional biomedical applications. We emphasize that
the sparse extensions proposed are mainly aimed at achieving
parsimonious prediction rather than variable selection per se.
However, we also discuss some preliminary empirical results on
variable selection using the class of methods proposed here.

As a topical example of a multiple-source, high-dimensional
problem, we consider a case study in AD. AD is a neurodegen-
erative condition in which prediction of future disease course
is a central research topic. AD is multifactorial in the sense
of being mediated via multiple underlying biological processes
and several current and emerging large-scale studies span mul-
tiple data types. These include the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (Mueller et al. 2005), the Rhineland
study (http://www.rheinland-studie.de), and the UK Biobank
(http://www.ukbiobank.ac.uk) (this is a broader study including
neurodegeneration-related data). The data we consider are from
ADNI which is a large-scale longitudinal study involving mul-
tiple data modalities; we focus specifically on the prediction of
future cognitive scores, as described in detail below.

The remainder of this article is organized as follows. In
Section 2, we introduce the scalable Bayesian regression (SBR)
approach, describing model formulation, prior specification,
and tuning of shrinkage levels. Section 3 deals with the sparse
extension of the methodology, sparse SBR (SSBR), including
a general solution and a relaxed variant for the very large p
case. The relationship between SSBR and pCR is discussed.

We further introduce an adaptive approach to regulate induced
sparsity. Results and comparisons with standard penalized like-
lihood approaches from a simulation study are presented in
Section 4, while the AD case study appears in Section 5. The
article concludes with a discussion in Section 6.

2. Scalable Bayesian Regression

2.1. Model

Let y be a n × 1 vector of responses and X1, . . . , XK denote
covariate or feature matrices from K data sources. Each Xk is
of size n × pk so that the total number of potential predictors is
p = ∑K

k=1 pk. We consider the normal linear model

y = X1β1 + X2β2 + · · · + XKβK + ε, ε ∼ Nn(0, Inσ
2),

where each βk is a pk-vector of regression coefficients, Nn(μ, �)

denotes an n-dimensional multivariate normal density with
mean μ and covariance �, and In is the n × n identity matrix.
Without loss of generality we assume throughout that all data
are standardized. Let X = [X1 · · · XK] and β = (βT

1 , . . . , βT
K)T

denote the respective global n × p predictor matrix and p-
vector of regression coefficients (here, “global” means with all
sources taken together). Then, with prior π the full model under
consideration is

y ∼ Nn(Xβ , Inσ
2), with β|σ 2 ∼ π(β|σ 2) and π(σ 2) ∝ 1/σ 2.

The improper prior for σ 2 (Jeffreys’ prior) is a common option
for linear regression models. The crucial aspect of prior formu-
lation for the multiple-source, high-dimensional setting under
consideration is the construction of π(β|σ 2), as we discuss in
detail below.

2.2. The Prior on β

The SBR approach is based on a natural generalization of the
standard ridge prior. Specifically, the prior on β is

β | λ, σ 2 ∼ Np(0, �−1σ 2), (1)

where λ = (λ1, . . . , λK)T , � = diag(�1, . . . , �K), and �k =
λkIpk with λk > 0, for k = 1, . . . , K. Here each λk is a source-
specific shrinkage level on the corresponding βk. The special
case K = 1 recovers the standard ridge prior with just one
shrinkage level (and indeed the solutions presented below could
be used to give a scalable implementation of classical ridge with a
single λ). However, when dealing with multiple data sources the
various data sources may differ in importance. This motivates
a need for source-specific penalties that can adjust to account
for such differences and additionally provide potentially useful
information about the relevance of specific data sources.

At this point it is useful to define the quantity

Gλ
def=

K∑
k=1

λ−1
k XkXT

k . (2)

All formulas presented in the remainder of this section are cast
in terms of Gλ. Importantly, this means that the key computa-
tions under SBR can be formulated so as to require only a one-off

http://www.rheinland-studie.de
http://www.ukbiobank.ac.uk


30 K. PERRAKIS AND S. MUKHERJEE

computation of these individual inner product (Gram) matrices
XkXT

k of size n×n (these calculations can be easily implemented
in parallel) followed mainly by operations on those matrices. As
we show below, for wide data with large p, this gives a practical
way to implement SBR.

2.3. Inference

Under the conjugate prior in (1) the posterior distribution of β

is given by

β | y, λ, σ 2 ∼ Np(̂β , �βσ 2), (3)

where ̂β = �βXTy and �β = (XTX + �)−1. Calculating the
posterior mode directly involves a p × p matrix inversion. For
p > n we instead use

̂β = �−1XTwλ, (4)

where wλ = [
y − (In + Gλ)

−1Gλy
]

is an n-vector whose calcu-
lation involves only an n×n matrix inversion. The derivation of
(4) is provided in Appendix A of the supplementary materials.
For very large problems the computation of the posterior mode
can be done in parallel; additionally, we draw attention to the
useful expression

̂βk = λ−1
k XT

k wλ, (5)

for k = 1, . . . , K. Having obtained the posterior mode, pre-
diction from an available Xpred of dimensionality m × p is
straightforward via ypred = Xpred

̂β . When interest lies solely
in prediction the corresponding calculation can be simplified to

ypred = Xpred�−1XTwλ =
[ K∑

k=1
λ−1

k Xpred
k XT

k

]
wλ. (6)

Calculating the posterior covariance matrix can also be simpli-
fied through the formula

�β = �−1[Ip − XT(In + Gλ)
−1X�−1]. (7)

For details see Appendix A.
In practice we are not interested in evaluating the entire

covariance matrix (for very large p this might in fact be dif-
ficult due to memory limitations). However, the methodology
considered in Section 3.3 does require the diagonal elements of
�β . In this case the formula in (7) facilitates computation as it
allows for fast and parallel block matrix computations. Note that
�βk = λ−1

k
[
Ipk −XT

k (In+Gλ)
−1Xkλ

−1
k

]
, so here the magnitude

of each pk, for k = 1, . . . , K, can guide us in determining
whether to use block computations or not. To clarify the use
of parallel computations here, consider calculating the diagonal
elements of a specific large �βk using B blocks. Consider Xk =
[X(1)

k · · · X(B)

k ] where each X(b)

k has p(b)

k = ⌊
pk/B

⌋
columns for

b = 1, . . . , B − 1, while p(B)

k = pk − (B − 1)p(1)

k for the last sub-
matrix X(B)

k . Denote the variances by σ 2
βk

= diag
(
�βk

)
. The

calculation which is then performed in parallel is

σ
2(b)
βk

= diag
(
λ−1

k

[
Ip(b)

k
− X(b)T

k (In + Gλ)
−1X(b)

k λ−1
k

])
, (8)

for b = 1, . . . , B, with the output being the pk-dimensional
vector of variances; namely, σ 2

βk
= (σ

2(1)
βk

, . . . , σ 2(B)
βk

)T .
Continuing, the posterior distribution of the error-variance

parameter is an inverse-gamma distribution; specifically

σ 2 | y ∼ IG(a, b), with shape a = n
2

and scale b = yT(In + Gλ)
−1y

2
. (9)

The numerator of the scale parameter in (9), whose calculation
is again simplified via Gλ, is important because it will appear
throughout; for its derivation see Appendix A in the supplemen-
tary materials.

Below we will make use of the marginal likelihood m(y|λ).
This is the likelihood obtained by integrating over the parameter
space with respect to the joint prior distribution of β and σ 2.
Under our conjugate prior specification we have

m(y|λ) ∝
∫

p(y|β, σ 2) π(β|λ, σ 2)
1
σ 2 dβ dσ 2

∝ |In + Gλ|− 1
2
[
yT(In + Gλ)

−1y
]− n

2 . (10)

2.4. Automatic Setting of Shrinkage Levels λ

Specification of penalty parameters is often handled through
cross-validation (CV) or generalized CV in a frequentist frame-
work (Tibshirani 1996), while Bayesian methods typically rely
on empirical Bayes (EB) point estimates or data-dependent
hyper-priors (see, e.g., Yuan and Lin 2005; Park and Casella
2008; Balakrishnan and Madigan 2010; Hans 2010; Griffin and
Brown 2010). An alternative approach is considered by Lykou
and Ntzoufras (2013) who tune the Bayesian lasso penalty based
on Pearson correlations at the limit of significance determined
by Bayes factors. Furthermore, fully Bayesian shrinkage meth-
ods include the horseshoe prior (Carvalho, Polson, and Scott
2010) and the double generalized Pareto (Armagan, Dunson,
and Lee 2013).

In our case, the tuning parameter λ is vector valued and for
the applications we consider we would like fast and efficient
approaches by which to set it. To this end we propose three EB
approaches for tuning λ. Here, by EB we refer generically to
any procedure that uses the data to estimate hyper parameters.
We consider three specific estimators based on (i) minimizing
the leave-one-out CV error, (ii) maximizing the marginal likeli-
hood, and (iii) locating the maximum-a-posteriori (MAP) value
under a data-dependent prior. All three are free of user input and
are computationally fast. We discuss each in turn.

2.4.1. Leave-One-Out Cross-Validation (CV) Estimator
The leave-one-out CV error in our case can be computed as

λ̂CV = argmin
λ

yT(In+Gλ)
−1[diag(In+Gλ)

−1]−2
(In+Gλ)

−1y.

(11)
This is similar to the well-known case of ordinary least squares;
for proof see supplementary materials, Appendix B.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 31

2.4.2. Marginal Likelihood (ML) Estimator
A common EB approach is to use the marginal likelihood; in our
case from Equation (10) the quantity to be maximized is

λ̂ML = argmax
λ

|In + Gλ|− 1
2
[
yT(In + Gλ)

−1y
]− n

2 . (12)

2.4.3. Maximum-a-Posteriori (MAP) Estimator
We consider a product-exponential data-dependent prior for λ

with prior mode at zero, prior mean equal to λ̂CV as given in
(11), and prior variance λ̂

2
CV, that is, π(λ) ≡ ∏K

k=1 Exp
(̂
λ−1

kCV
)
.

The rationale is that a smaller individual estimated penalty
λ̂kCV corresponds to a stronger belief that the corresponding
Xk matrix contains useful signal and therefore to a smaller
prior variance (especially when λ̂kCV < 1). On the other hand
as λ̂kCV increases we let the quadratic prior variance account
for the chance that there is actually some useful signal in Xk
which passes undetected by the leave-one-out CV approach.
The resulting posterior mode estimate is

λ̂MAP = argmax
λ

|In + Gλ|− 1
2
[
yT(In + Gλ)

−1y
]− n

2

× exp
(

−
K∑

k=1

λk

λ̂kCV

)
. (13)

The optimization problems in Equations (11)–(13) are
typically well behaved, with the shape of the optimization
landscape depending on relative signal strength. For non-
informative sources, it is relevant to note that the magnitude
of λk does not affect the ridge solution after certain large values
(as all coefficients are shrunk to zero); hence, it is reasonable to
simply define a large upper bound for the optimization. A key
point is that the number of available data sources K will typically
not be large, hence the vector λ is low dimensional, allowing the
optimizations to be efficiently solved via standard routines.

3. Sparse SBR

The SBR posterior mode in (4) is non-sparse (“dense”) in the
sense that the regression coefficients will not be set to exactly
zero. In this section, we propose a methodology for “sparsifying”
SBR. The idea is to find a sparse approximation to the full
(dense) Bayesian solution that is closest to it in a KL sense.
To do so, we minimize the KL divergence with respect to the
posterior distribution of the regression vector, but subject to
a lasso-type �1 constraint to ensure sparsity. We show first a
general solution that is suitable for small to moderate p and
then go on to consider a relaxed solution that is applicable to
the large p case. The solutions presented below bear a resem-
blance to other Bayesian post-processing approaches (Bondell
and Reich 2012; Hahn and Carvalho 2015) and to frequentist
methods in the context of wavelet regression (Antoniadis and
Fan 2001) and ridge logistic regression for text categorization
(Aseervatham et al. 2011). However, these are rooted in different
arguments and not equivalent to the KL-based approach below.
The particular connection with the pCR solution of Bondell and
Reich (2012) is discussed in Section 3.2.

3.1. Sparsification Using the KL Divergence

Let f (β) ≡ Np(̂β , �βσ 2) denote the true posterior over β ,
conditional on σ 2, with mode and covariance as in Equations
(4) and (7), respectively, and let q(β) ≡ Np(γ , �βσ 2) denote an
approximate conditional posterior where γ is the approximate
mode (this will provide a sparsification of ̂β). The idea is to
minimize the KL divergence from q to f under an �1 penalty
on vector γ to induce sparsity. It is easy to show that the KL
divergence from q(β) to f (β) is

DKL(f ||q) = 1
2σ 2 (̂β − γ )T�−1

β (̂β − γ ). (14)

Note that DKL in (14) is a true distance metric (satisfying non-
negativity, symmetry, and the triangle inequality). Note also that
the presence of the nuisance parameter σ 2 cannot be ignored
when the minimization also involves a �1 penalty on γ . In prin-
ciple, one could work with the marginal posterior distribution
of β (a multivariate t distribution) to avoid consideration of
σ 2. However, in this case working with the KL divergence is
not straightforward. Another option would be to use a plug-in
posterior point estimate in (14) such as the mode or mean of σ 2.
Instead, here we pursue a tuning-free approach in which σ 2 is
integrated out; specifically, we work with

Eσ 2|y
[
DKL(f ||q)

] =
∫

DKL(f ||q)p(σ 2|y) dσ 2

= cn,λ
2

(̂β − γ )T�−1
β (̂β − γ ), (15)

with the posterior of σ 2 given in (9) and cn,λ = n q−1
λ , where

qλ = yT(In + Gλ)
−1y. Using the posterior mean or mode of σ 2

results in cn,λ = (n − 2)q−1
λ and cn,λ = (n + 2)q−1

λ , respectively.
Using (15), the general solution including the �1 penalty is

γ̂ = argmin
γ

cn,λ
2

(̂β − γ )T�−1
β (̂β − γ ) + α‖γ ‖1, (16)

where α > 0 controls the sparsity of γ̂ . Clearly, the SSBR
solution implies a lasso-type model with the particularity of a
saturated design where the analogue to sample size equals p.
This means that SSBR can include at most p predictors (unlike
classical lasso which for p > n can include at most n predictors).
The minimization in (16) can be solved as a lasso problem by
setting y∗ = √cn,λ�

−1/2
β

̂β as response variable and X∗ =
√cn,λ�

−1/2
β as design matrix, and using the efficient implemen-

tation of glmnet in R (R Core Team 2019). Note, however, that
this involves first calculating and then performing computations
with the inverse covariance matrix, which can be problematic
even for moderately large p.

As an alternative, we present a mathematically equivalent
representation of (16) that is easier to work with. First, observe
that the posterior covariance in (7) can be written as �β =
�−1/2(Ip − MTM)�−1/2, where M = (In + Gλ)

−1/2X�−1/2.
Now, consider the singular value decomposition (SVD) M =
UDVT , where U ∈ R

n×n, D ∈ R
n×p and V = [V1 V2] with

V1 ∈ R
p×n and V2 ∈ R

p×(p−n). Note that computation of
U, D, V1 is O(n2p) and also that the last p − n columns of D
contain only zeros. In addition, the decomposition of M can
be greatly sped up by first computing the SVD of MMT . Some
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algebra (details provided in Appendix C of the supplementary
materials) reveals that the resulting equivalent SSBR solution
requires as additional input only the n singular values of M and
matrix V1; specifically, the solution is

γ̂ = argmin
γ

cn,λ
2

‖D̃1/2VT
1 �1/2(̂β − γ )‖2

2

+ cn,λ
2

‖�1/2(̂β − γ )‖2
2 + α‖γ ‖1, (17)

where D̃ is n × n diagonal with elements d̃i = d2
i /(1 − d2

i ) and
di are the singular values. In practice (17) can be solved as an
augmented-lasso problem, using

y∗ = √cn,λ

(
D̃1/2VT

1 �1/2
̂β

�1/2
̂β

)
and

X∗ = √cn,λ

[
D̃1/2VT

1 �1/2

�1/2

]
,

which have respective dimensionality (n+p)×1 and (n+p)×p.
The matrix multiplication involves mainly sparse matrices, as
D̃ and � are diagonal. An interesting side note is that such
SVDs can be generally used in p > n problems for covariances
of the form (XTX + Z)−1 for some diagonal matrix Z. Thus,
using (17) instead of (16) is advocated when p is large. However,
for applications with ultra-large p the approach presented in
Section 3.3, which leads to a closed-form expression for γ̂ , is
the only practical option.

3.2. Relation to Penalized Credible Regions

The pCR approach (Bondell and Reich 2012) seeks solutions of
the form ̂β = argminβ ‖β‖0 subject to β ∈ Cα , where Cα is the
(1 − α) × 100% credible set. Under a normal ridge-prior on β

and an inverse-gamma prior on σ 2 this translates to a feasible
set of the form {β : (β − ̂β)T�−1

β (β − ̂β) ≤ C} for some C
corresponding to a specific credible region.

To tackle the obvious computational challenges of the above
solution, the authors initially relax the �0 norm to a smooth
homotopy between �0 and �1, and subsequently apply a local
linear approximation which results in a convex �1 optimization
problem. The resulting solution is very similar to our solution
obtained through the KL approach; in fact by setting the penalty
in (16) as α = cn,λ

2 ‖̂β‖−2
1 ξ (now cn,λ/2 no longer affects the opti-

mization and ξ is the new penalty) we recover exactly the pCR
solution. As noted in Bondell and Reich (2012) there is a one-
to-one correspondence between C and ξ ; however, it is highly
nonlinear. Under this setting we have selection consistency
(under mild regularity conditions) when p is fixed or as long as
p/n → 0 for n → ∞. The authors also demonstrate selection
consistency (under stricter conditions) for rates log p = O(nc)
for some c ∈ (0, 1) using univariate thresholding rules on simple
ridge estimates.

In practice, the ξ that corresponds to the asymptotically con-
sistent sparse set is not recoverable. Theoretically, the penalty
should depend on sample size so that ξn → 0 faster than the
posterior distribution concentrates around the “true” parameter
value; however, under finite samples the selection of ξ crucially
affects the sparsity of β (Hahn and Carvalho 2015). Therefore,

tuning of ξ is handled through common grid search and inspec-
tion of regularization plots/prediction errors in Bondell and
Reich (2012).

3.3. A Relaxed Solution for the Very Large-p Case

Instead of the KL divergence to the posterior used above,
consider the KL divergence between the quantities q∗(β) =
Np(γ , Vβσ 2) and f ∗(β) = Np(̂β , Vβσ 2), with Vβ = diag(�β).
This amounts to setting as target distribution the product of the
marginal posterior densities. The use of independent posterior
factorizations is common in various settings; for instance, in
marginal likelihood estimation (Botev, L’Ecuyer, and Tuffin
2013; Perrakis, Ntzoufras, and Tsionas 2014), in expectation-
propagation algorithms (Minka 2001), and in variational Bayes
(Bishop 2006).

Working with the diagonal matrix Vβ leads to the following
minimization

γ̂ = argmin
γ

cn,λ
2

(̂β − γ )TV−1
β (̂β − γ ) + α‖γ ‖1

= argmin
γ

p∑
j=1

cn,λ
2

(β̂j − γj)
2v−1

j + α|γj|, (18)

where vj is the jth element, for j = 1, . . . , p, of the main diagonal
of Vβ . Note that the main diagonal elements are feasible to cal-
culate even for very large p; this can be achieved by calculating
Equation (8) in parallel. Moreover, the minimization in (18) has
a closed-form solution which is as follows

γ̂j =
{

β̂j − sign(β̂j)
qλ

n
vjα, if |β̂j| >

qλ

n vjα

0, otherwise.
(19)

The derivation of (19) is provided as supplementary materials
(Appendix D).

Note that for fixed p and n → ∞ we obtain γ̂j = β̂j which
makes sense from an asymptotic perspective. However, when α

is a constant not depending on n either directly or indirectly
(e.g., through β̂j), a “non-sparsifying” effect may be triggered
even for moderate sample size, which is in contrast to our initial
intent. Setting of α is discussed next.

3.4. Tuning of α

Specification of α can be handled via a grid search with the
aim to find the α that minimizes a specific criterion. This is
expected to be relatively fast using the general solution for
small/moderate p, while under the relaxed solution, once the
variances are calculated, the grid search requires only checking
a true/false statement. This strategy will typically produce a full
path of solutions which can also be used to produce regular-
ization plots. We acknowledge this as a valid common strategy,
however, we do not further pursue it here. Instead, we consider a
faster, tuning-free, alternative which borrows information from
the SBR solutions.

We consider parameter-specific and source-specific adaptive
penalties for each γ̂jk, where j = 1, . . . , pk and k = 1, . . . , K.
Specifically, we consider penalties of the form

αjk =
(

1
|β̂jk|

)wk

, (20)
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Table 1. Overview of methods, characteristics, issues, and solutions.

Method Characteristics Issues Proposed solutions

SBR
Scalable to very large p

Tuning of λ
CV estimator, Equation (11)

Very fast ML estimator, Equation (12)
Dense solutions MAP estimator, Equation (13)

SSBR
Scalable to moderately large p

Tuning of α Tune via Equations (20) and (21)Relatively fast
Sparse solutions

Relaxed SSBR
Scalable to very large p

(1) Tuning of α

(2) Control effect of n

(1) Tune via Equations (20) and (21)
(2) fn = 1 (no control) or

fn = log n (cSSBR)
Fast
Sparse solutions

similar to the adaptive lasso approach (Zou 2006). The rationale
in (20) is that the larger the magnitude of β̂jk, the smaller the
corresponding penalty. In addition, we restrict to wj ∈ (0, 1)

which leads to reasonable shrinkage when |β̂jk| > 1 and avoids
extreme shrinkage when |β̂jk| < 1. Here, we consider one
specific possibility, namely to treat the wk’s as power-weights,
setting them equal to

wk = λ̂k∑K
l=1 λ̂l

. (21)

The power weight quantifies the “importance” of a data source
in relation to the others. Values close to zero and one indicate
sources of “high” and “low” importance, respectively. Coef-
ficients with an absolute value smaller than one (the com-
mon case) are penalized more in low-importance sources, while
shrinkage on large coefficients (greater than one in absolute
value) is relatively mild, and at most approximately equal to
one (when wk → 0). With this approach we take advantage
of the available information from the previous SBR step, that
is, parameter-specific shrinkage through β̂jk and source-specific
shrinkage through λ̂k. Arguably, this strategy may result in
undesirable non-sparse solutions, but that will be in the rare,
and rather unrealistic, case where K is large and all sources are
equally important in the sense that the λ̂k’s will be more or less
the same; a setting where in fact a single λ SBR approach is more
suitable.

Note that, to implement this approach under the general
solution in (16) we find first γ ∗ via glmnet (with penalty set
to one) using as design matrix X∗ = √cn,λ�

−1/2
β A, where A is

the diagonal matrix with elements the reciprocals of (20). The
solution is then γ̂ = Aγ ∗.

As a final comment, we remark that despite the fact that
this penalization approach depends indirectly on sample size
through the regression coefficients in (20) and the shrinkage
parameter in (21), it may still be sensitive to the “non-
sparsifying” effect on the relaxed SSBR solution discussed at the
end of Section 3.3. Controlling this effect requires scaling the
penalty in (20) by a factor fn = f (n); however, automatic tuning
of fn is not straightforward. Empirical results (see Section 4)
suggest that fn = log(n) can lead to a reasonable balance
between sparsity and predictive performance. We will call this
relaxed extension “controlled” SSBR or cSSBR (as it “controls”
for sample size). Table 1 provides an overview of the different
methods under consideration, their characteristics, the issues
that arise under each approach, and our proposed solutions.

4. Simulation Study

In this section, we present a simulation study aimed at mimick-
ing a typical modern biomedical application involving multiple
data types. Reflecting the relative ease with which multiple data
modalities can now be acquired such designs are becoming
common, with examples including the Cancer Genome Atlas
(https://cancergenome.nih.gov), the ADNI (http://adni.loni.usc.
edu), and the Rhineland Study (http://www.rheinland-studie.
de), among many others.

4.1. Setup

4.1.1. The Problem
We consider a regression problem with covariates from three
sources, namely clinical (CL), gene-expression (RNA), and
genetic (single nucleotide polymorphism or SNP) data with
respective (simulated) feature matrices XCL, XRNA, and XSNP. The
number of covariates in each data source is set equal to pCL = 26,
pRNA = 2000 and pSNP = 100,000. Although the methods we
propose can cope with larger p, we restrict total p in this section
to facilitate empirical comparison with standard methods.

4.1.2. Covariates
The covariate matrices for the clinical and gene-expression
variables are generated as XCL ∼ NpCL(0, �CL) and XRNA ∼
NpRNA(0, �RNA), respectively. Here �CL and �RNA are covariance
matrices estimated from (real) phenotype and gene-expression
data from the Drosophila Genetic Reference Panel (DGRP)
(Mackay et al. 2012) (data available online at http://dgrp2.
gnets.ncsu.edu/data.html). To simulate the genetic data XSNP

we use a block-diagonal covariance structure. We specify
�SNP = diag(�1

SNP, . . . , �B
SNP), where each �b

SNP is of size S × S
(with S = pSNP/B) and is generated from an inverse-Wishart
with S degrees of freedom and identity scale matrix, that is,
�b

SNP ∼ IW(S, IS) for b = 1, . . . , B. As XSNP dominates in terms
of dimensionality the specification of B essentially controls
the overall correlation level. We consider two simulation
scenarios: (i) B = 1000 corresponding to 1000 blocks of
size 100 (“low-correlation scenario”) and (ii) B = 100
corresponding to 100 blocks of size 1000 (“high-correlation
scenario”). We first generate Xc

SNP ∼ NpSNP(0, �SNP) and then
discretize in correspondence to the common SNP encoding
0/1/2 (homozygous major allele/heterozygous/homozygous
minor allele). The discretization is tuned to give a reasonable
empirical distribution of SNPs; specifically, for j = 1, . . . , pSNP

https://cancergenome.nih.gov
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.rheinland-studie.de
http://www.rheinland-studie.de
http://dgrp2.gnets.ncsu.edu/data.html
http://dgrp2.gnets.ncsu.edu/data.html
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we discretize as

XjSNP =

⎧⎪⎨⎪⎩
0, if |Xc

jSNP| < 1.5,
1, if |Xc

jSNP| ≥ 1.5 and |Xc
jSNP| < 2.5,

2, if |Xc
jSNP| ≥ 2.5.

4.1.3. Regression Coefficients and Sparsity
For the (true) regression vectors βCL, βRNA, and βSNP, we consider
the following levels of sparsity (fraction of nonzero β ’s); sCL =
50%, sRNA = 5%, and sSNP ∈ {1%, 10%, 50%}. Varying sparsity
of βSNP gives three scenarios for overall sparsity s: (i) s ≈ 1%
(sparse scenario), (ii) s ≈ 10% (medium scenario), and (iii)
s ≈ 50% (dense scenario). Let p∗

CL, p∗
RNA, and p∗

SNP denote the
respective number of elements in the sub-vectors β∗

CL, β∗
RNA, and

β∗
SNP containing the nonzero beta coefficients. The nonzero betas

are generated from the generalized normal distribution (GND).
Following the parameterization in Mineo (2003) the probability
distribution function of a GND(μ, σ , u) with location μ ∈ R,
scale σ > 0, and shape u > 0 is given by

f (x) = 1
2u1/uσ�(1 + 1/u)

exp
(

− |x − μ|u
uσ u

)
.

The GND includes as special cases the normal (u = 2) and
the double exponential (u = 1) distributions. To avoid these
particular cases (which could potentially bias the simulation
toward ridge or lasso, respectively) we set u = 1.5 and generate
the nonzero effects as β∗

jCL ∼ GND(0, σ̂ , 1.5), for j = 1, . . . , p∗
CL,

β∗
jRNA ∼ GND(0, σ̂ , 1.5), for j = 1, . . . , p∗

RNA, and β∗
jSNP ∼

GND(0, 2σ̂ /3, 1.5), for j = 1, . . . , p∗
SNP. The signal strength is

controlled via the scale parameter σ̂ (this is downscaled by a
factor of 1.5 for the SNP coefficients to control the total amount
of signal in the SNPs). To complete the specification of the
simulation we set this scale parameter by considering the finite-
sample risk in a simplified CL-only oracle-like setup. Specifi-
cally, we consider the correlation induced between predictions
Xtest

CL
̂βCL (under the OLS estimate using the low-dimensional CL

data only) and out-of-sample test data (with the data-generating
mechanism being a linear model with conditional mean XCLβCL

and error variance equal to unity). Specifically, we set σ̂ = 0.1
which results in an average out-of-sample correlation of 0.6
when n = 100 and ntest = 5000.

Given the above configurations (low/high correlation and
sparse/medium/dense scenarios) we generate data from the
model

yi = xT
iCLβCL + xT

iRNAβRNA + xT
iSNPβSNP + εi,

where εi ∼ N(0, 1) and i = 1, . . . , ntrain with ntrain ∈
{100, 250, 500}. The test sample size ntest always equals 5000.
Each simulation scenario is repeated 50 times.

4.1.4. Methods Under Comparison
We consider SBR and the corresponding sparse extensions
(unless otherwise noted, SSBR/cSSBR will refer to the relaxed
approach discussed in Section 3.3). Specifically, we consider
SSBR with the penalty terms in (20) and the power-weights in
(21), as well as cSSBR approaches with f (1)

n = √
n, f (2)

n = log(n),
and f (3)

n = √
log(n). Results reveal no significant differences

with respect to the EB λ estimates (proposed in Section 2.4)
under SBR. However, the MAP estimator resulted in better
performance under the sparse approaches and, therefore, here
we focus on this approach. Corresponding results under the CV
and ML approaches are provided in Appendix E. Furthermore,
we present results obtained from f (2)

n as this option led to a
good balance between sparsity and predictive performance. We
compare to standard ridge, elastic net (enet), and lasso (with λ

set to minimize the mean squared error from 5-fold CV using
packageglmnet in R). The enet control parameter α was tuned
via grid search over the interval [0.1, 0.9] using a step of 0.1.

4.2. Results

Boxplots of out-of-sample correlations between predictions and
test data under the low-correlation and high-correlation sim-
ulations are presented in Figure 1. Results for (classical) ridge
and lasso are as expected; lasso clearly performs better in the
sparse case, while ridge does better in the medium and dense
cases. Also, more or less as expected enet performs as well as
lasso in the sparse scenario and slightly better than lasso in the
medium and dense scenarios; although in the latter two cases it
is outperformed by ridge.

SBR performs generally well. Specifically, we see that:

• In the sparse scenario SBR is nearly equivalent to lasso/enet.
• In the medium scenario SBR generally outperforms ridge,

lasso, and enet.
• In the dense scenario SBR is nearly equivalent to ridge.

For SSBR approaches we see:

• Under low correlations SSBR/cSSBR are slightly worse than
SBR but competitive.

• Under high correlations in the medium/dense cases with
large n SSBR/cSSBR are competitive to SBR.

Figure 2 shows the resulting values of − log λ̂k for k =
{CL, RNA, SNP} (higher values correspond to lower penalty;
i.e., higher estimated importance) in the low-correlation simu-
lations, and provides useful insights concerning the behavior of
SBR methods. The estimates appear to adjust well with appro-
priate source-specific penalization. This adaptation allows SBR
to perform well when dealing with multiple data sources. The
corresponding plots from the high-correlation scenarios (not
shown) are very similar.

As noted above, the SSBR (without or with control) solutions
seem to allow equally good predictive performance, in certain
cases, as the dense SBR solutions. In addition, they employ
fewer parameters; Table 2 shows the average sparsity (over the
50 repetitions) induced by SSBR methods under the various
simulations. As seen, the solutions appear to adjust to the true
underlying sparsity. In addition, controlling for the effect of
sample size yields much sparser models. In contrast, lasso and
elastic net produced very sparse models that showed no such
adaptation; see Appendix E of the supplementary materials
for detailed results. We note that lasso can include at most n
predictors and here yielded extremely sparse solutions (ranging
from 0.008% to 0.45%). Elastic net can in principle include more
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Figure 1. Simulation study. Comparison of ridge, lasso, and elastic net to SBR, SSBR, and cSSBR methods under the MAP estimator for the low correlation (top panels) and
high correlation (bottom panels) scenarios. Each panel shows correlations between predictions and held-out test data at various training sample sizes and sparsity levels
as indicated. Boxplots are over 50 sampled datasets. The total dimension p is over 100,000 with three (simulated) data sources (see text for details).
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Figure 2. Simulation study, source-specific shrinkage levels. Boxplots showing source-specific − log λ̂ values from SBR based on the MAP estimator in the low-correlation
simulations under various levels of sparsity for n = 100 (top row), n = 250 (middle row), and n = 500 (bottom row).
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Table 2. Simulation study, induced sparsity.

Simulation scenario

Low-correlation High-correlation

Method Sample size s ≈ 1% s ≈ 10% s ≈ 50% s ≈ 1% s ≈ 10% s ≈ 50%

SSBRMAP

n = 100 14% 47% 57% 8% 42% 53%
n = 250 10% 50% 71% 4% 57% 73%
n = 500 14% 69% 77% 13% 70% 79%

cSSBRMAP

n = 100 4% 18% 25% 2% 16% 22%
n = 250 2% 24% 35% 1% 25% 38%
n = 500 4% 35% 43% 3% 33% 42%

NOTE: Average sparsity induced by the SSBR and cSSBR methods based on the MAP estimator over 50 repetitions of the low and high correlation simulations under varying
true sparsity (s).
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Figure 3. Simulation study, variable selection. One standard error plots of the
average area under the ROC curve (AUC), over 20 repetitions, as a function of sample
size.

predictors than observations, but in our simulations it did not
adjust to the underlying sparsity levels (ranging from 0.06% to
1.2%).

The focus of this article is on prediction, but it is interesting to
consider the variable selection behavior of the proposed meth-
ods. As already noted, lasso and enet yielded extremely sparse
solutions for the problem considered above and are not suitable
for selection in this particular p � n setting. We therefore
considered a smaller problem which includes only the simulated
CL and RNA data with p = 2026 and s ≈ 6%. We sum-
marize our findings via the area under the ROC curve (AUC;
calculated using the absolute values of regression coefficients).
Results comparing lasso, enet, SSBR, and relaxed-SSBR/cSSBR
(all under the MAP estimate) are shown in Figure 3. Results
based on the CV and ML estimates (not shown) are similar. We
see that SSBR in this case is competitive with the lasso and enet.

4.3. Computational Performance

We conclude by examining computational burden as a func-
tion of total dimension p and in comparison with the lasso.
To do so we include a fourth “data source” (which is simply
Gaussian noise) that adds a variable number of predictors. The
number of these additional predictors is set so that the total

p ∈ {5×105, 106, 2.5×106, 5×106, 107}. Sample size is set
equal to 100. Computations were carried out on a compute
server with 128 cores (2.28GHz) and 1TB of RAM. For lasso
we treat the binding of individual matrices into one data matrix
(an operation not needed for SBR) as a preprocessing step and
do not include this in the reported runtimes. We consider two
approaches for tuning the lasso penalty. The first is the most
commonly used approach in practice; that is, CV (lassoCV). For
this we use the parallel option in glmnet for estimation of
the penalty parameter via 10-fold CV (the default option). The
second approach is to do a grid search (lassogrid) with no CV.
This is sometimes used in practice with the purpose of finding
a value that maximizes a specific criterion (for instance BIC).
We do not consider any particular criterion but report only
the time needed to evaluate the lasso over the grid (i.e., we do
not include any computational cost for the assessment of any
criterion). For the sake of comparison we define a rough grid
over the interval [0.1, 1) with a step of 0.2. We note that in a
practical application of the lasso the grid might need to be finer
and the computational costs of assessing any statistical criterion
might be nontrivial given the size of the matrices. These factors
would increase the computational time needed for the lasso. For
our methods we consider the SBRMAP approach, which requires
evaluation of both λ̂CV in (11) and λ̂MAP in (13) (and is thus in
principle the slowest), and also its corresponding relaxed sparse
solution. We include the formation of transpose matrices and
calculation of Gram matrices in reported runtime (although
these could be regarded as preprocessing steps). We do not
include ridge because it can be seen as a special case of SBR
and hence would be equally fast when implemented as described
here. We also do not include elastic net as this method will be
slower than lasso due to tuning of the additional parameter α.

Figure 4 shows the average runtimes (in minutes) over five
fits on a single simulated dataset. SBR and sparse SBR are
considerably faster than lassoCV with the gap increasing with p
and this is also the case in comparison to the simple lassogrid
approach described above. We note that by adding random
noise variables as described above we in a way “favor” the lasso
implementation inglmnet, as the screening rules that are used
by default can relatively easily exclude these covariates. SBR is
the fastest method, with the average runtime for p = 107 being
approximately 5 min, net of all steps. Running sparse SBR with
suitable parallel block-matrix calculations makes this method
also very fast; average runtime was approximately 10 min for
p = 107. We note that our current implementations of the
methods are certainly not optimal in terms of computational
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Figure 4. Simulation study, computational efficiency. Average runtime (five runs
for one simulated dataset) required for SBRMAP, SSBRMAP, lassoCV, and lassogrid,
for increasing p.

efficiency. We note also that our methods can fully use available
cores for parallel computation, hence they should continue to
gain in runtime if more cores are available even with no increase
in clock speed.

5. Alzheimer’s Disease Case Study

5.1. Data

The data we consider are from the ADNI (Mueller et al. 2005),
a large scale longitudinal AD study involving multiple data
modalities. The specific subset of the ADNI data we use were
previously used in a DREAM challenge (Allen et al. 2016) and
consists of n = 759 baseline and 24 month follow-up records.
Similarly to the DREAM challenge and follow-up work (e.g.,
Dondelinger, Mukherjee, et al. 2019) we consider as response
the scores from a cognitive function test called the mini men-
tal state examination (MMSE); in particular, the difference in
MMSE between 24 month follow-up and baseline.

We consider three data sources: (1) clinical (CL) data consist-
ing of pCL = 12 features (including, among others, diagnosis
at baseline, Apolipoprotein E status, gender, age, years of edu-
cation); (2) structural magnetic resonance imaging (MRI) data
consisting of pMRI = 929 features; and (3) genetic data in the
form of SNP data, consisting of pSNP ≈ 7.3 × 106 features (this
is the number of SNPs available after excluding those with zero
variance across subjects and those with more than 10% missing
entries). We apply the proposed methods to these data, treating
the three data types (1)–(3) as sources.

The aim is to consider a real-world application with data
sources of widely differing dimensionality and to investigate
whether adding the complex MRI and genetic data to the clinical
covariates can improve predictive ability. We emphasize that
the goals of the present article are mainly methodological and
that the results we present at this stage should be regarded as

illustrative of the capabilities of the methods rather than as
candidate AD predictors for practical use.

5.2. Results

Figure 5 shows results using SBR with CV, ML, and MAP
estimators applied to CL only, CL and MRI, and finally all of
the data (CL, MRI, and SNP). For the latter case we also show
results using SSBR and cSSBR with fn = log(n). Predictive
performance is quantified via the correlation between predicted
and observed values in held-out test data. The boxplots show the
results of 10 random train/test splits (with ntrain = 500, ntest =
259 in each split) annotated with the number of variables with
nonzero coefficients after fitting the models in each case.

Here we see that the choice of estimator can make a differ-
ence: the results from the CV approach are notably worse when
considering the CL and MRI datasets together. In this case the
CV estimator does not adjust properly, since under the ML and
MAP approaches we actually see that the addition of MRI fea-
tures to clinical covariates improves predictions. In contrast to
many studies including MRI data, here we included all available
MRI features without any preselection. Adding the SNP features
does not increase predictive accuracy further, rather it slightly
worsens performance, in line with previous work suggesting that
genetic data is not helpful when clinical covariates are already
available (Allen et al. 2016). Notably, SSBRMAP yields almost the
same predictive accuracy as the regressions that do not include
the SNP matrix at all; this is because the sparsified analyses are
able to set all SNP coefficients to exactly zero. More generally,
the excess risk (over CL and MRI alone) is relatively small in
magnitude, despite the vast number of additional covariates.
This is due to the fact that the models have a separate tuning
parameter for each data source and are therefore able to effec-
tively “switch off ” this source, while continuing to regularize
the other covariates via source-specific penalties. In addition,
cSSBRMAP provides identical predictions with SSBRMAP whilst
employing fewer CL and MRI features.

All penalties were estimated directly from the data and not
prespecified in any way. To further investigate source-specific
penalization, in Figure 6 we show boxplots of the source-specific
− log λ̂k values (when we consider all three sources together),
for k = {CL, MRI, SNP} and ntrain = {100, 250, 500}. Under
the CV/ML estimators the MRI dataset is penalized less in
comparison to the other two, while under the MAP estimator
it is the CL dataset which appears to be the most important.
This seems to explain the slight differences between the methods
(and their sparse extensions) observed in Figure 5 with respect
to predictive accuracy when including all sources.

A referee suggested including results from classical ridge
for the combined CL, MRI, and SNP analysis. Due to com-
putational considerations arising from the need to handle the
large matrices (unlike in our method, classical ridge cannot
decompose the problem) we consider a variant of the problem
above with a random subset of half of the SNP variables. Results
(again from 10 train/test splits) obtained from 5-fold CV using
glmnet indicate poor predictive performance; the resulting
average correlation is 0.14 (standard deviation of 0.05). This
result provides an empirical example of the benefit of source-
specific penalization.
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Figure 5. Alzheimer’s disease case study, predictive performance. Correlations between predictions and held-out test data from 10 random splits with ntrain = 500 and
ntest = 259 under SBR, SSBR, and cSSBR using the CV (left), ML (center), and MAP (right) estimators.
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Figure 6. Alzheimer’s disease case study, estimated shrinkage levels. Boxplots show source-specific − log λ̂ values versus training sample size using the SBR methods with
CV (left), ML (middle), and MAP (right) estimation of shrinkage levels.

6. Discussion

The aim of this article was to introduce a framework for high-
dimensional regression using multiple data sources that allows
efficient and fast computations in the wide data, very large p set-
ting. We introduced SBR, a generalized ridge-type model which
can be particularly effective for prediction in the aforemen-
tioned setting. We further proposed sparse extensions (SSBR),
including a general solution scalable to moderately large p and
a relaxed solution scalable to very large p.

Concerning the three EB estimators (CV/ML/MAP), our
empirical results suggest that the choice of estimator can affect
predictive performance. Specifically, in the case study results
under CV were worse for the combined clinical/MRI analysis,
likely due to the variance of the CV risk estimate. Overall,
using the MAP estimator resulted in better predictive perfor-
mance both in the simulation study and in the case study;
therefore, we recommend using this approach as the default
option. With respect to the sparse solutions, we mainly focused

on the relaxed SSBR approaches, demonstrating that they show
potential for achieving similar predictive performance to SBR
but with explicit sparsity. In addition, using some control for the
effect of sample size on sparsity seems desirable as it can lead to
enhanced sparsity with no loss in terms of prediction.

It is worth nothing that the proposed sparsification approach
based on the KL divergence is quite general in the sense that
it is not restricted to the use of a ridge prior which assumes
independence a priori. For example, one can consider a g-prior
(Zellner 1986) when n > p or the information matrix prior
(Gupta and Ibrahim 2009) when n < p. The latter approach,
which is a combination of the g-prior and the ridge prior, can
also be extended to incorporate multiple penalties in a manner
similar to the one presented in this article.

As a final remark, we note that this work primarily focused on
predictive performance. However, we think that understanding
the potential role of the methodologies presented here (and
related scalable Bayesian and post-processing methods) for vari-
able selection will be an interesting direction for future work.
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Supplementary Materials

Appendices: Mathematical derivations related to Equations (4), (7), (9),
(11), (17), and (19) and additional results from Section 4 (pdf file).

R package and code: Package sbr is available at https://github.com/
kperrakis/sbr. (R installable files and documentation pdf file). Repro-
ducible code for the simulation study of Section 4 available at https://
github.com/kperrakis/sbr/tree/master/simulation_paper (Rdata and R
files).
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